CALCULATION FORMULAS

1. Langlier Saturation Index (Page # 68-70) SI = pH + Tf + Cf + Af – TDSf

2. AMOUNT CONVERSIONS (Page # 25-26)

A. Ounces to Pounds:Ounces \div 16 = PoundsB. Fluid Ounces to Gallons:Fluid Ounces \div 128 = Gallons

3. SURFACE AREA SQUARE OR RECTANGLE (Page # 27) Surface Area (in Square Feet) = Length X Width

4. POOL VOLUME SQUARE OR RECTANGLE (Page # 27-28)
Note: (<u>AVERAGE DEPTH</u> = shallow + deep ÷ 2)
Pool Volume (in Gallons) = Length X Width X Average Depth X 7.5

5. POOL VOLUME IN 1 INCH OF WATER (Page # 32)

Length X Width X 7.5 X 0.0833 = Volume in 1 Inch of Water Volume in 1 Inch of water X # of inches = Total Volume of Water Loss

6. COMBINED CHLORINE (Page # 76, 93)

Combined Chlorine = Total Chlorine – Free Chlorine

- 1. Test for Free Chlorine and Total Chlorine
- 2. Subtract Free Chlorine from Total Chlorine

7. TURNOVER RATE (Page # 118)

Turnover Rate (in Hours) = Pool Volume \div Flow Rate \div 60

8. FLOW RATE (Page # 119)

Flow Rate (in Gallons per Minute) = Pool Volume \div Turnover Rate \div 60

9. FILTER SURFACE AREA: (Page # 137-139)

Filter Area(FA), Filter Media Rate(FMR), Flow Rate(FR) A. **FA** = FR \div FMR B. **FMR** = FR \div FA

C. $\mathbf{FR} = \mathbf{FA} \times \mathbf{FMR}$

10. BREAKPOINT CHLORINATION (Page # 76-78)

- Determine the amount of Combined Chlorine: Combined Chlorine(CC) = Total Chlorine(TC) – Free Chlorine(FC)
- Calculate the Breakpoint Chlorination(BPC) amount: Breakpoint(BPC) = CC X 10
- Determine the desired change amount:
 Desired Change = BPC FC

KEY PAGES

ADA: Page # 275

Breakpoint Chlorination: Page # 77

Bromine(HOBR - pH): Page # 57-58

Conversion Calculations: Page # 26

Characteristics of Disinfectants: Page # 52

Chlorine(HOCL - pH): Page # 50

HMC, Water Chemistry Adjustment Guide: Page # 259

Ideal Ranges, Water Chemistry Guidelines: Page # 258

Langelier Saturation Index: Page # 69

pH: Page # 63

Spa Water Replacement: Page # 168-169

Calculating Water Replacement: Page # 32

Water Circulation Formulas: Page # 118-119

Water Filtration Formulas: Page # 137-139

	Saturation Index Factors					
Tem	Temperature		Calcium Hardness expressed as CaCO3		Total Carbonate Alkalinity	
°F	°C	Tf	ppm (mg/L)	Cf	ppm (mg/L)	Af
32	0.0	0.0	25	1.0	25	1.4
37	2.8	0.1	50	1.3	50	1.7
46	7.8	0.2	75	1.5	75	1.9
53	11.7	0.3	100	1.6	100	2.0
60	15.6	0.4	125	1.7	125	2.1
66	18.9	0.5	150	1.8	150	2.2
76	24.4	0.6	200	1.9	200	2.3
84	28.9	0.7	250	2.0	250	2.4
94	34.4	0.8	300	2.1	300	2.5
105	40.6	0.9	400	2.2	400	2.6
Kara I			800	2.5	800	2.9

LANGELIER SATURATION INDEX

Total Dissolved Solids

TDS	Factor
≤800	12.1
801-1,500	12.2
1,501-2,900	12.3
2,901-5,500	12.4
>5,500	12.5

The Saturation Index formula is as follows:

SI = Saturation Index

pH + Tf + pH as Temperature tested factor

Cf + Calcium Alkalinity factor factor

TDSf Northerica, TDS factor

Af

3

SATURATION INDEX WORKSHEET

SI = pH + tF + cF + aF - TDSf =

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				
	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

SATURATION INDEX WORKSHEET

SI = pH + tF + cF + aF - TDSf =

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				
	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

SATURATION INDEX WORKSHEET

SI = pH + tF + cF + aF - TDSf =

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				
	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Total Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

A x	Вх	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	<i>Block #</i> 2 (From word problem)	<i>Block #4</i> (From word problem)	
	GAL	PPM (CALCULATED)	
	••••	Block #5 (From page #259)	
	10, 000 Gallons	PPM (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

A x	Вх	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	<i>Block #</i> 2 (From word problem)	Block #4 (From word problem)	
	GAL	PPM (CALCULATED)	
	• •	Block #5 (From page #259)	
	10, 000 Gallons	PPM (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

A x	Вх	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	<i>Block #</i> 2 (From word problem)	<i>Block #4</i> (From word problem)	
	GAL	PPM (CALCULATED)	
	<u>.</u>	Block #5 (From page #259)	
	10, 000 Gallons	PPM (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

A x	Вх	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	Block #2 (From word problem)	Block #4 (From word problem)	
	GAL	PPM (CALCULATED)	
	• •	Block #5 (From page #259)	
	10, 000 Gallons	PPM (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

A x	Вх	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	<i>Block #2</i> (From word problem)	<i>Block #4</i> (From word problem)	
	GAL	PPM (CALCULATED)	
	•	<i>Block #5</i> (From page #259)	
	• 10, 000 Gallons	•PPM (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

BPC = 1-2-3 PLUS HMC BREAKPOINT CHLORINATION

STEP 1: To determine the amount of CC TC - FC = CC

STEP 2: Calculate breakpoint amount by taking CC & multiplying times 10 CC X 10 = Breakpoint

STEP 3: From CC in Step 2 - Remove existing FC from word problem BP - FC = Desired Change Desired change in HMC Block #4

A x	B x	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	Block #2 (From word problem) GAL	Block #4 (From word problem) PPM	
	• • 10, 000 Gallons	(CALCULATED) Block #5 (From page #259) 	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x	x	(AMT)

BPC = 1-2-3 PLUS HMC BREAKPOINT CHLORINATION

STEP 1: To determine the amount of CC TC - FC = CC

STEP 2: Calculate breakpoint amount by taking CC & multiplying times 10 CC X 10 = Breakpoint

STEP 3: From CC in Step 2 - Remove existing FC from word problem BP - FC = Desired Change Desired change in HMC Block #4

A x	B x	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	Block #2 (From word problem) GAL	Block #4 (From word problem) PPM	
		(CALCULATED) Block #5	
	• • 10, 000 Gallons	(From page #259) 	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

BPC = 1-2-3 PLUS HMC BREAKPOINT CHLORINATION

STEP 1: To determine the amount of CC TC - FC = CC

STEP 2: Calculate breakpoint amount by taking CC & multiplying times 10 CC X 10 = Breakpoint

STEP 3: From CC in Step 2 - Remove existing FC from word problem BP - FC = Desired Change Desired change in HMC Block #4

A x	B x	C =	TOTAL
AMOUNT OF CHEMICAL (FROM APPENDIX B-2 OR PRODUCT LABEL)	ACTUAL POOL VOLUME	DESIRED CHEMICAL CHANGE	
	Block #2 (From word problem) GAL	Block #4 (From word problem) PPM	
	GAL	(CALCULATED)	
	•• • 10, 000 Gallons	Block #5 (From page #259) ••• • • (GIVEN)	
<i>Block #1</i> (From page #259)	Block #3	Block #6	Block #7
(AMT)	x 	x	(AMT)

					ful	unti	C.	Sol	Itlantic Solutions	ns					
			Po	unds	of g	ool Si	ze - 0	Salt required for Pool Size Gallons	Pounds of Salt required for 3200 ppm Pool Size Gallons	0 pp	В				
000	10,000	12,000	14,000	16,000	18,000	20,000	22,000	24,000	10,000 12,000 14,000 18,000 18,000 20,000 22,000 24,000 28,000 30,000 32,000 34	28,000	30,000	32,000	34,000	0	0 36,000
213	287	320	373	427	480	533	587	840	693	747	800	853	907		980
000	250	300	350	400	450	500	550	800	850	700	750	800	850		900
187	233	280	327	373	420	487	513	580	807	653	700	747	793		840
173	217	280	303	347	390	433	477	520	563	807	850	693	737		780
180	200	240	280	320	096	400	440	480	520	089	600	640	089		720
147	183	220	257	293	330	367	403	440	477	513	550	587	623		088
133	187	200	233	287	006	333	387	400	433	487	500	533	587		800
120	150	180	210	240	270	300	066	OBIE	390	420	450	480	510		540
107	133	180	187	213	240	287	293	320	347	373	400	427	453	1. A	480
56	117	140	163	187	210	233	257	280	303	327	350	373	397		420
08	100	120	140	180	180	200	220	240	260	280	300	320	340		360
67	83	100	117	133	150	187	183	200	217	233	250	287	283		300
		00	00	107	100	100	447	180	CEF	107	200	CFC	700		240

				TO	Pounds of Salt required for 3200	01 0	altre	quire	ol De	020	n ppm	n					
			5			P	ool Si	Pool Size Gallons	allons								
Current Salt Level			anan we														
(ppm)	8,000	10,000	12,000	14,000	12,000 14,000 16,000	18,000 20,000 22,000 24,000 28,000	20,000	22,000	24,000		28,000	30,000 32,000	32,000	34,000	38,000	38,000	40,000
0	213	287	320	373	427	480	533	587	840	693	747	008	853	706	086	1013	1087
200	200	250	300	350	400	450	500	550	000	850	700	092	008	098	006	950	1000
400	187	233	280	327	373	420	487	513	580	807	653	007	747	262	840	887	833
600	173	217	280	303	347	06£	433	477	520	563	607	050	E69	737	082	823	887
800	160	200	240	280	320	380	400	440	480	520	580	008	840	089	720	760	800
1000	147	183	220	257	293	330	367	403	440	477	513	550	587	623	088	697	733
1200	133	167	200	233	287	300	333	367	400	433	487	500	533	567	600	633	667
1400	120	150	180	210	240	270	300	330	360	390	420	450	480	510	540	570	800
1600	107	133	180	187	213	240	287	293	320	347	373	400	427	453	480	507	533
1800	93	117	140	163	187	210	233	257	280	303	327	350	373	397	420	443	487
2000	80	100	120	140	180	180	200	220	240	260	280	300	320	340	360	380	400
2200	87	83	100	117	133	150	187	183	200	217	233	250	267	283	300	317	333
2400	53	87	80	93	107	120	133	147	160	173	187	200	213	227	240	253	267
2800	40	50	80	70	80	90	100	110	120	130	140	150	160	170	180	190	200
2800	27	33	40	47	53	60	67	73	80	87	93	100	107	113	120	127	133
3000	13	17	20	23	27	30	33	37	40	43	47	50	53	57	60	63	67
3200	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal	ideal
3400	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok.	ok	ok	ok	ok
3600+	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute	dilute

DAILY LOG

POOL#/NAME_____ GALLONS_____

Recommend	led	1.0-	02	7.2-	80-	200-	30-	Flo	Filt.		
PPM*		3.0	Max	7.8	120	400	50	Rate	Pres		
			GOL (5	51			~				
FUNCTION			COMB	Ph	T.A.	HARD-	CY-			ADJUSTMENTS	√BY
		CHL	CHL			NESS	ACID				
	Μ										
M											
PN	M										
DATE											
TUE. AN											
M											
PN	M										
DATE											
	Μ										
M											
PN	M										
DATE											
THU. AI											
M											
PN	M										
DATE											
FRI. AM											
M											
PN	M										
DATE											
SAT. AN											
M											
PN	M										
DATE											
SUN. AN											
M											
PN	M										
DATE											

This log *must* be prominently displayed in pump room and readily available for review by local health inspector.

*NATIONAL RECOMMENDED PARAMETERS. Please check with local Health Dept. for variations in your locality.

PROPERTY NAME:_____

ATLANTIC SOLUTIONS, INC REP:_____919-933-4250

Pool Drain Safety (VGB) Compliance Data <u>PERMIT CANNOT BE ISSUED IF FORM IS INCOMPLETE</u>

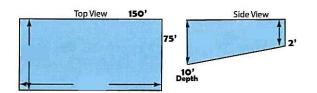
A separate form is required for each pumping system.

Name of Pool
Address
1. Pump Flow
Pump ManufacturerModel
#Horsepower
Maximum Pump Flow. Maximum flow rate <u>from pump curve</u> :gpm. (Provide supporting evidence if flow reduction)
2. Drain Sump Measurements This is the area under the floor drains, if field built sump may need to remove drain cover one time to measure. (Check here if sumpless, then proceed to next section)
Sump shape: Round- width:inches diameter; OR Squareinches X
Sump minimum depth inches Diameter of outlet pipe in sump inches Distance of top (inside) of outlet pipe from bottom of cover/grate inches sump manufacturer and model # if available
3. Drain Cover/Grate Data Number of drains on each pump Distance between drains (on centers) Cover/grate manufacturer, model, Lifespan:
Maximum flow rating of cover/grategpm (floor); gpm (wall)
Date drain cover/grates installed:
Number of <i>operable</i> skimmer equalizers OR Have the equalizers been disabled? YES / NO
Equalizer fitting Manufacturer, model, Lifespan Equalizer fitting maximum flow rating
Date equalizer cover/grates installed: EXPIRATION DATE:
5. <u>Safety Vacuum Release System (SVRS)</u> – SVRS required if dual drains are closer than 3 feet on center or pump has a single drain with blockable cover or sump.
Safety Vacuum Release System manufacturer -
Vacuum line- Choose One No vacuum line in pool OR Protective cover on vacuum lines installed before May 1, 2010 OR Self-closing, self-latching cover designed to be opened with a tool on vacuum lines installed after May 1, 2010
Full name of person providing this information

Full name of person providing this information _	
Signature	Date
NCDHHS	

RULES GOVERNING PUBLIC SWIMMING POOLS 15A NCAC 18A. 2500

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES DIVISION OF ENVIRONMENTAL HEALTH ENVIRONMENTAL HEALTH SERVICES SECTION


ALL ENVIRONMENTAL HEALTH Rules can be accessed at the following address: https://ehs.ncpublichealth.com/faf/pti/pools.htm

PRACTICE QUESTIONS

1. Determine the square footage area of a high-rate sand filter that has a flow rate of 380 gpm and is designed to operate at 16 gpm per square feet.

(A) 23.75 SQ FT (B) 19.5 SQ FT (C) 29 SQ FT (D) 10.8 SQ FT

- 2. Legionnaires disease is spread by?
 - (A) Skin Contact (B) Breathable Droplets of Water
 - (C) Over Chlorinated Pools (D) Alkalinity Too Low
- 3. What condition could lead to immediate closure of pool?
 - (A) Main drains not visable(B) Crack in pool deck(C) No lifeguard on duty(D) No underwater lights installed
- 4. You are the operator for a pool that is 150 feet long and 75 feet wide. It has a depth range from 10 feet to 2 feet. What is the volume in gallons for this facility?

(A) 1,012,500 gal (B) 6,750 gal (C) 506,250 gal (D) 400,000 gal

5. Your pool is 40 feet long and 20 feet wide. The water level in your pool dropped 5 inches overnight. What is the volume of missing water in gallons?

(A) 2,850 gal (B) 3,400 gal (C) 2,499 gal (D) 968 gal

6. For a pool that is 155,000 gallons, what flow rate in gallons per minute(gpm) is needed for a 6 hour turnover?

(A) 430.55 gpm (B) 4305.6 gpm (C) 861.1 gpm (D) 86.1 gpm

7. You are the operator of a 300,000 gallon outdoor pool. The water tests give you the following reading: pH: 7.2 Temperature: 76 degrees F Calcium Hardness: 150 ppm **Total Alkalinity: 50ppm Total Dissolved Solids: 700 ppm** What is the Saturation Index for this pool? (A)-0.3 (B) -0.6 (C) -0.8 (D) 0.3 8. If you have a diarrheal incident in your pool, you must raise the free chlorine level to 20 ppm and keep it there for how long? (A)24 Hrs (B) 25.5 Hrs (C) 255 Hrs (D) 12.75 Hrs 9. Which reagent is used to test pH? (A)OTO (B) DPD (C) Phenol Red (D) Sodium Thiosulfate 10. What is ORP measured in? (A) Megavolts (B) Millivolts (C) Microvolts (D) Kilovolts 11. You have a 25,000 gallon hotel pool with a calcium hardness level of 100 ppm. How much calcium chloride (77%) would be required to increase this to 300 ppm? (A)60 Lbs (C) 300 Lbs (B) 100 Lbs (D) 250 Lbs

12. You operate a 70,000 gallon pool, and your chemical test readings are: Total Chlorine is 2.4 ppm, and Free Chlorine is 1.0 ppm. How much calcium hypochlorite is needed to reach breakpoint?

(A) 200 Lbs (B) 15.56 Lbs (C) 8.35 Lbs (D) 11.38 Lbs